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Abstract—In the operator splitting solution of atmospheric transport-chemistry problems modeling air
pollution, a major task is the numerical integration of the stiff systems of ordinary differential equations
describing the chemical transformations. In this paper a numerical comparison is presented between two

special purpose solvers developed for this task.
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1. INTRODUCTION

This paper deals with the numerical integration of the
initial value problem for stiff systems of ordinary
differential equations (ODEs) from atmospheric
chemistry. Although the numerical stiff ODE field is
well developed and an interesting variety of efficient
and quite reliable stiff ODE solvers is available
(Hairer and Wanner, 1991), the general experience is
that for three space dimensional transport-chemistry
problems, where stiff ODE integrations are carried
out at thousands of grid points, still faster tailor-made
solvers are needed. In this paper we compare two such
solvers on a set of three atmospheric chemistry prob-
lems from practice.

The first solver is TWOSTEP, a simple code based
on the implicit, second-order, two-step backward
differentiation formula (BDF). The code has been
designed as a special purpose solver for atmospheric
chemistry problems. The solver is special purpose in
the sense that Gauss-Seidel iteration is used for
approximately solving the implicitly defined BDF
solution (Verwer, 1994; Verwer and Simpson, 1994),
rather than the more commonly used iterative modi-
fied Newton technique. The Gauss—Seidel iteration
renders the integration explicit which implies low
start-up costs and a low memory demand. This is of
advantage in an operator splitting application of
a stiff solver. The Gauss—Seidel iteration is related to

*This report is one of a series on the development of
algorithms for long-range transport air pollution models.
We gratefully acknowledge support from the RIVM for the
projects EUSMOG and CIRK.

+ Email: Jan.Verwer@cwi.nl.

49

the straightforward (Jacobi or Picard) iteration used
in the quasi-steady-state-approximation (QSSA) ap-
proach, to which it compares very favorably (Verwer
and Simpson, 1994).

The second solver is VODE, the variable-coefficient
ordinary differential equation solver from Brown et al.
(1989) which is comparable with LSODE, the “Liver-
more solver” from Hindmarsh (1980) which is often
used in the field of atmospheric chemistry. Hence,
VODE is a general, state of the art, variable order
implicit BDF code. From the user point of view
VODE and LSODE are very comparable. For ex-
ample, they have a similar user interface. We pay
special attention to sparsity of the Jacobian matrix in
an attempt to reduce the time VODE spends in the
iterative modified Newton process for solving the
nonlinear implicit BDF relations. As is well-known,
for large chemical models it is precisely this process
which often renders an implicit ODE solver too
expensive for application to real life, the three-
dimensional transport-chemistry models and which in
the past has led to the development of special purpose
QSSA methods (Hesstvedt et al., 1978; Hev et al.,
1978). We emphasize that exploiting sparsity has been
shown before to be advantageous for atmospheric
chemistry problems (Jacobson and Turco, 1994).
Since VODE is known as an efficient solver for chem-
ical kinetics problems, optimal use of sparsity should
make it one of the best candidates from the numerical
stiff ODE field for tailor-made solution of atmo-
spheric transport-chemistry problems.

Our main purpose thus is to test TWOSTEP
against VODE, provided with sparse matrix routines,
and to check whether the claims made for this explicit
code (Verwer, 1994; Verwer and Simpson, 1994) are
confirmed if we largely economize on the modified
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Newton process by exploiting sparsity of the Jacobian
matrix. Section 2 is devoted to the two solvers. In
Section 2.1 we explain the notion of Gauss-Seidel
iteration as implemented in TWOSTEP and briefly
discuss how this solver works. In Section 2.2 we dis-
¢uss how we have modified the public domain version
of VODE with regard 1o exploiting sparsity. Section 3
contains results for our three different test problems.
Concluding remarks are given in the final Section 4.

2. THE TWO SOLVERS
21 TWOSTEP

Atmospheric chemical kinetics systems can be cast
in the nonlinear form

d
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where y is a vector of concentrations, P(r, y)is a vector
function and Lz, ») a diagonal matrix. The com-
ponents Piir, vl Lyle. iy, are nonnegative and re-
present, respectively, production and loss terms for
compound y;. For the numerical solution we consider
the varable step size, two-step BDF formula
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where 1" is the approximation for y{,). 7 = (¢ + 1)/
{0+ 2), ¢ =ty — by Wlge; — 1) and
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We have chosen the second-order BDF formula in
view of the modest accuracy requirement. The ap-
proach we follow can also be examined for higher-
order BDF formulas. Our use of the Gauss-Seidel
technique exploits the production-loss form (1), by
which equation (2) can be written as
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The Gauss-Seidel technique is now applied to the
nonlinear system of equations y = F(y). That is, given
the iterate ) as the ith approximation for the sought
solution "', the Gauss-Seidel iteration imple-
mented in TWOSTEP computes the next iterate y“* )
by the componentwise formula

fi+ 1))
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Inspection of the operator F reveals that application
of equation (5) results in an explicit computation (no
systems of equations need to be solved) due to the

diagonal form of L. More precisely, for the computa-
tion of ;' " "' only division by the scalar variable

14 yrlyfty, . )
is required, where v denotes the intermediate vector
S

The fact that in ¢ the first & — 1 components are taken
from the new (i + 1)st iterate, makes equation (5)
a Gauss-Seidel type iteration process. It is also pos-
sible to take the first k components in v from the
{i + st iterate. Then the method becomes scalarly
implicit, since L,(r, y) may depend on y,. We prefer to
avoid this scalar implicitness. Further, would we have
taken all m components in v from the old iterate 3",
then an iteration method of Jacobi or Picard type
would result. In this case equation (5) would be re-
placed by
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Computationally there is not much difference between
equations (5) and (6). However, equation (5) is in
a sense half-implicit, as it uses solution components as
soon as these have been updated which is character-
istic for the Gauss-Seidel approach. The half-implicit-
ness of course serves to improve the convergence of
the iteration. Due to this half-implicitness, the order
of the species obviously affects the accuracy of the
final iterate, especially when only a few iterations are
spent, which we advocate. However, our experience so
far is that the influence of the order of the species on
the accuracy is of minor importance. For our test
Problems I and II the order is given explicitly.
Noteworthy is that QSSA methods also use the
iteration formula (6), but with a different operator F.
In QSSA methods, F is based on the exponential
solution formula which is exact for species for which
both Py and L, are constant in y (cf. Hesstvedt ez al.,
1978; Hev et al., 1978). We start from the BDF integ-
ration formula (2) which in general is more accurate
than QSSA formulas. Furthermore, for components
for which both P, and L, are constant in y, the
solution with either equation (5) or equation (6) is
obtained in one iteration. Consequently, when indi-
vidual components rapidly approach their steady-
state value P,/L,, they are handled efficiently and
accurately by equations (5) and (6). In this respect, the
current iterative approach bears a resemblance with
the explicit QSSA approach. However, our experience
is that the TWOSTEP code based on the Gauss-
Seidel technique (5) is more efficient than well de-
veloped QSSA solvers (cf. Verwer and Simpson, 1994).
For a further discussion on TWOSTEP? with re-
gard to implementation aspects for formula (2), such

1 A copy of the Fortran 77 listing can be obtained from the
first author by Email: Jan.Verwer@cwi.nl.
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as the variable step size and start-up strategy. we refer
to Verwer and Simpson (1994). In the comparisons
carried out in this paper, the code has been applied in
two different ways, in the remainder indicated by
TWOSTEP! and TWOSTEP2.

TWOSTEPL. By TWOSTEPI we mean the stan-
dard black box use which here basically means that at
any time step two Gauss Seidel iterations are used It
should be noted that two iterations are by far not
enough to let the Gauss-Seide! iteration fully con-
verge. Our experience is that the overall accuracy of
the code improves with the number of tterations, but
the efficiency generally not. We therefore prefer a
small number of iterations, which is attractive in any
case after a restart with a small step size In all tests
the step size is variable and governed by user defined
tolerances (specified later), but constrained to a min-
imum and maximum, That is, in all tests we prescribe
a starting, a minimal and maximal step size. These are,
in seconds,

Tyan = 1o Toun = 1, Trmax = 900, (M

Step sizes below 1 s are redundant. The minimal time
constants of importance for photochemical chemmstry
models are about 1 min in size and species with a time
constant smaller than | s almost instantaneously get
in their (solution-dependent) steady state when they
are perturbed. Hence the choice of 1 s, is reasonable
and safe compared to 1 min. We emphasize that
without the 1 s, lower bound extremely small steps
could be selected by the variable step size selection
scheme, since atmospheric chemistry problems con-
taining photochemical reactions can possess time
constants as small as 107% to 1077 5 and step size
selection mechanisms do signal these extremely small
time constants. While the 1 s lower bound is imposed
for reasons of efficiency, the 900 s upper bound serves
to protect the code for taking too large step sizes. This
upperbound is reasonable on chemical grounds. With
step sizes much larger than 15 min the reliability of
numerical computations may degrade.

TWOSTEP2. TWOSTEP?2 refers to the same way
of application, but in addition certain ad hoc rules are
used to exploit special problem properties. This
means that special technigues like lumping or group
iteration are combined with Guass-Seidel iteration
process. These ad hoc rules will be discussed with the
test problems and of course serve to obtain a more
efficient numerical solution process.

2.2. VODE

VODE is a variable-coefficient ordinary differential
equation solver based on the implicit BDF formulas
{Brown er al., 1989; Hairer and Wanner, 19911. VODE
might be called a successor of the “Livermore solver”
LSODE from Hindmarsh (1980) which is often used
in the field of atmospheric chemistry. For a discussion
of the mathematical techniques implemented in
VODE we refer to Brown et al. (1989) and Hairer and

Wanner {19911 As mentioned in the introduction,
here we focus on the sparsity modifications we imple-
mented in the public domain version which we ob-
tained from Netlib (Dongarra and Grosse, 19871 To
llustrate the wide efficiency range for this general
solver, 1t has been used in three different ways. These
will be indicated by VODEL VODE2 and VODE3
VODEY VODE! concerns the standard black box
use, 1.e. no optional input 15 used and the method
parameters ITASK {not essential for our comparison)
and MF are set to 4 and 22, respectively. The choice

automatically by numerical differencing. This choice
also invokes the use of the standard, full matrix linear
algebra routines DGEFA (factoring) and DGESL
(backsolves) from the hinear algebra software package
LINPACK (Dongarra et al., 1979 for solving the
linear systems arising in the iterative modified New-
ton solution of the implicit BDF relations. MF = 22
also implies extra storage because both the Jacobian
and 1ts factored form (LU-decomposition) are stored.
This saves Jacobian updates, on the other hand addi-
tional storage may be a disadvantage for higher space
dimensional problems. Because no optional input is
used, there 15 no constraint on the step size selection.
For example, the code selects its own starting step
size. To sum up, VODE! is the easiest, most user
friendly way of calling as it requires no extra effort on
the part of the user whatsoever. This, of course, does
have a price in terms of CPU time for ODE systems
with a large number of components, as we will see
later,

VODE2. In the second manner of calling VODE,
special problem properties are exploited so as to ob-
tain a more efficient numerical solution process.
VODE2 means use of ITASK = 4 and MF = 21. The
choice MF = 21 is important since this implies that
Jacobians have to be provided by the user in analytic
form. We emphasize that this already can save CPU
time because of sparsity. However, VODE2 still uses
the same (full matrix) linear algebra routines DGEFA
and DGESL as VODE1 does. Hence the sparsity is
here not yet exploited in the solution of the linear
systems. Like MF = 22, the choice MF = 21 implies
that extra storage is needed.

A second important difference with VODE]1 is that
for VODE?2 we also prescribe the stepsize constraints
{7) used by TWOSTEP, for the same reasons. How-
ever, it is necessary to overrule the rejection strategy
to enable equation (7). Without this, overruling the
code returns with an error message due to the con-
straint 7., = 1 and interrupts the integration, simply
because the automatic local error control of VODE
does signal time constants smaller than 1 s, and is not
allowed to reduce the stepsize due to equation (7). In
general, this is perfectly all-right, of course, and
VODE should not be blamed for it. We repeat that for
stiff photochemical chemistry problems step sizes
below 1 s, are redundant for global accuracy. This
lower bound will not be recovered in the results,
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unless extremely high accuracies are sought for. In
theory, the lower bound might cause problems for the
convergence of the iterative modified Newton process,
resulting in an interruption as a result of a conver-
gence failure. We have not experienced this in our
tests and do not expect it to happen for other prob-
lems either, because on a scale of 1 s, the Jacobian
matrix is not expected to change substantially.

VODE3. VODES3 is identical to VODE2, except
that now the sparsity of the Jacobian is exploited to
reduce the costs of solving the linear algebraic systems
arising in the modified Newton iteration. The idea is
easily explained. Consider a linear system of algebraic
equations of dimension m,

My =b. 8)

Suppose that equation (8) is directly solved by first
factoring M and then doing a backsolve. Factoring
means that M is written as M = LU, where L is
a lower and U is an upper triangular matrix (LU-
decomposition). Then equation (8) reads LUv = b and
the vector v is found by the backsolve, which involves
first solving the lower triangular system Lw = b fol-
lowed by solving the upper triangular system Uv = w.
Obviously, the solution of triangular systems is trivial.
This way of solving equation (8) is a standard proced-
ure in numerical algebra and is the usual approach
followed in stiff ODE solvers. Now suppose that M is
very sparse, i.e. M has very many zero entries. If to
a large extent the sparsity pattern of M can be main-
tained in the LU-decomposition, then the costs of the
factoring and the backsolve can be reduced substan-
tially, simple by omitting all redundant calculations in
which a zero occurs. For large systems this is very
attractive, as the number of operations for the factor-
ing and backsolve amount to, approximately, m®/3
and m? for a full (no zero entries) matrix. As a result,
for a large dimension the costs are high, especially
those for the factoring. Standard LU-decomposition
routines like those used in VODE1/2, treat the matrix
as full and hence do not exploit sparsity at all.

To exploit the sparsity in the LU-decomposition,
we have reordered the species in equation (1) such that
the most dense rows in the Jacobian reside in the
bottom of the matrix and the most sparse rows at the
tap. If this is the case, then the fill-in in L and U is
greatly reduced. For our test examples we have car-
ried out the reorderings using facilities offered by the
computer algebra package MAPLE (Char et al,
1991). We note in passing that one and the same
ordering is used for the whole time interval. At night,
when photochemical reactions are switched off, the
sparsity is somewhat larger, but for simplicity we have
not used this small advantage. Then, after having
determined the fill-in that remains from the factoring,
for which purpose again MAPLE is used, the linear
systems can be solved quite efficiently with routines
that omit all redundant calculations in which a zero
occurs. For this purpose we have used slightly modi-

fied versions of the ILU (Incomplete LU) routines
DSILUS (factoring) and DSLUI2 (backsolves) from
the sparse linear algebra package (SLAP). SLAP is
a public domain code written by Greenbaum and
Seager (with contributions of several other authors)
that is available from Netlib (Dongarra and Grosse,
1987). Hence these two sparse matrix routines replace
the full matrix LINPACK routines DGEFA and
DGESL, respectively. Like the LINPACK routines,
they factorize and backsolve, but omit all redundant
calculations in which a zero occurs. It should be
remarked, though, that now no longer pivoting occurs
in the matrix factorization. This could give rise to
errors in the linear system solution which otherwise
would have been avoided. We have not experienced
problems of this sort. Of course, if the factorization
fails, then the step size control of VODE will detect
this and a change in the step size will improve matters.
It seems that for solving stiff ODEs pivoting is not
often required (cf. Jacobson and Turco, 1994; Sher-
man and Hindmarsh, 1980).

Finally, Table 1 illustrates the sparsity for the three
test examples treated in Section 3. The table obviously
predicts a large reduction in CPU time for Problem
II1. For Problems I and II the gain will be less since
for these two the dimension is modest. Note that for
other atmospheric chemical kinetics problems with
a large dimension, a similar level of sparsity exists as
for our Problem IIl. For example, Jacobson and
Turco (1994) discuss a smog chemistry problem of
dimension 92 with only 695 nonzero entries in the
Jacobian. The fill-in only increases this to 839.

3 RESULTS FOR THREE TEST PROBLEMS

3.1. Set-up of experiments

The solvers are tested as if they were used in an
operator splitting environment. This means that we
split up the total integration interval in a lot of sub-
intervals, representing the length of advection steps
taken in the operator splitting. For each subinterval
we then restart the integration of the stiff solver. All
three test examples are based on chemical transforma-
tions of which part are photochemical. This means
that part of the reaction constants are determined by
time of the day dependent photolysis rates which
undergo a near discontinuity at sunrise and sunset. In
all three examples, we take the same integration inter-
val covering 112 h. This interval starts at 04.00 h at
day one and ends at 20.00 h at day five. Thus the time
interval is sufficiently long to include a number of
diurnal cycles for the important photochemical trans-
formations and to include a large set of different initial
conditions due to the restarts.

The total integration interval of 112 h is split up in
56 2-h subintervals which involves 56 restarts. Our
measure of accuracy is based on the relative root
mean square error RRMS, for each species k, taken
over the endpoints of all 2-h intervals over the 112 h.
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Table 1. Sparsity data

Nonzero % Nonzeros
Dimension entries Fill-in LU
Problem 1 15 87 0 25
Problem Il 1 11 12 3
Problem 111 SO0 107 14
Hence, 6 C,H, + OH - 4,0, ky = 8710 'Zexpl ~ 1070 T}
r'v""”w 7. CeHyy + OH a0, o= 1410 " expt ~ 5597
j z (_V; - ,th.i)z . YH 12 "
RRMS, = /. 1 . 9) 8 C,H, + OH - 4,0, kg = 166 107 M expi474/T)
\ Sonde? 9 CH, + OH 2,0, ko= 4110 "2 expi{S45' T}
LR
10. XYL + OH - a,0, ko= 14101
where N = 56, 1, = 14,400 + 7200n s and yl1,) re-
presents a sufficiently accurate reference solution. We 1L 180 + OH 4,0, kyp = 255107 expl410/ Ty
then calculate the nu r of signific: 1g1ts
c mt:»e of significant digits for the 12 CO + OH - a.0, K= 2410 1
average of RRMS,, defined by :
. 13. CH, + OH - 4,0, kyy= 2910 Yexpt — 1820'T)
i 1 L3
e e V
SDA logio (m Z RRMS*)‘ 10 14 50, + OH ~s0, kg = 23210 exp( - 457 T)

k=1

Our comparison focuses on modest accuracy, ie. re-
lative accuracies near 1%, since higher accuracy
levels are redundant for the actual practice of three-
dimensional air pollution modeling. For all three test
problems we will use the same set of relative error
tolerances rtol and absolute error tolerances atol for
the variable step size control, viz.

rol =107, atol = 1.0, 1=1,2.34,5 (i1

for all species. In all three test problems, the unit of
concentration is number of molecules per cm®. We
therefore effectively invoke a relative error control.
For some species (radicals) the concentration can be
smaller than unity, but these values are insignificant
for the overall solution and require no local error
control. Since the two solvers use quite different solu-
tion techniques, and are therefore difficult to compare,
efficiency is measured by CPU time. In the figures
showing the results, we thus plot the SDA values
against the measured CPU times (in unit seconds).

3.2. Example Problem I: the EUSMOG chemistry

The chemical model is identical to the one de-
scribed in Van Loon (1994). This model is a highly
parameterized version of the EMEP MSC-W model
(Simpson et al., 1993; Simpson, 1994) that will be used
in Section 5. It consists of 15 reactions between 15
species:

1. NO + O, = NO, k, = 20107 exp( — 1400'T)

2. NO, + hv - NO + O, ky = 145107 2 exp( — Od/cos 2)
3. NO, + OH — NO,. ky = 1.68 107 exp(560:T)
4. 2NO,; + O, = 2NO.. ks = see Van Loon (1994)

5.0, + hv—=b,OH + b,0, ko =2010"*exp( — 14/cos Z}

15. SO, - SO, kis=13910°°

The parameter Z denotes the solar zenith angle and
T is the temperature in Kelvin. In Van Loon (1994)
the above set of reactions is part of a smog prediction
model, consisting, apart from chemistry, of advection,
horizontal and vertical diffusion, emission and depos-
ition. Each of these processes is treated in an operator
splitting context. This means that per split step for
each grid cell one ODE describing the chemical reac-
tions has to be solved. Here, however, we only carry
out box calculations with the chemical model. In
order to get more realistic concentration profiles,
emission terms Q; and deposition terms vg; have been
added. For NO,, O3 and SO, deposition is specified
and for NO, the VOCs and SO,, emission. All time-
dependent coefficients are updated at the beginning of
the 2-h intervals and then frozen for the rest of the
time. A specification of all parameters and input data
defining the complete ODE system is given in Appen-
dix A of the preprint Verwer et al. (1995). Evaluation
of the eigenvalues of the Jacobian matrix for various
conditions has shown that the eigenvalues range from
— 10" to -~ 107'%s™! approximately, indicating
that the system is (moderately) stiff. Recall that time
steps of a few minutes size should be achievable for an
efficient code.

First we mention the order in which the compo-
nents are treated in the Gauss-Seidel process (equal
for TWOSTEP1/2): NO,, NO, O;, OH, NO;., the
VOCs, SO, and SO,. As TWOSTEPI is the standard
way to use TWOSTEP, we now only describe how we
exploited special problem characteristics in TWO-
STEP2, in order to improve the convergence of the
Gauss-Seidel iteration. In the chemistry literature the
approach we follow is called “lumping” (Hesstvedt et
al., 1978; Hev et al., 1978). In our case, the lumping
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mvolves the mtroduction of the two "new™ species
NQ, = NO; + NO and O, = NO, + O,. For both
a differential equation can be specified with positive
production and loss terms. The differential equation
for NO,, for example, takes the form

d
E%N(), s ky NOOH ~ 2he INO)? O,

— gy NOy 4 Ono

= ko ANO, = NOY»-OH
~ 2ks - NO, 05 (NO, - NO}
~ 19, -(NO, = NO) + 0o

= Pno, — Lo, NO, . (12)
where
Pug, = k3 NO-OH + 2kNO; O;-NO
+ gy NO + Qno (13
and
Lno, = ks OH + 2k, NO;-O5 +vg,. (14)

When we would compute the implicit solution for
the original ODE system augmented with the lump
species exactly, the lumping relations also hold for
this exact implicit solution. That is, at any nth time
step we have

NO. . = NOz» + NO*,  O,n = NO;zu + Oza. (15)

This, however, is not true for the approximate solu-
tion obtained with Gauss-Seidel iteration. The idea
behind the lumping technique is to impose the lump-
ing relations (15) on the solution obtained after each
Gauss-Seidel iteration, thus hoping that this will im-

prove the convergence to the exact implicit solution.

In our case, the lumping of NO, and NO into NO,,

cte. underlies the assumption that the first two reac-

tions from above are in some sense dominant in the

whole set of chemical transformations. Because, if we

consider only reactions 1 and 2, then we have
9« NO, =0, 9»0* ={

{16
de dr ’

showing that for these two reactions NO, and O, are
conserved. Consequently, if the first two reactions are
truly dominant in the whole system, then NO, and O,
are expected to vary slowly. This, in turn, implies that
the integration of the differential equation for NO,
and O, can be done accurately, so that imposing
relation (15} by correcting one of the grouped species
will make sense.

We perform the integration of the new species as
follows. At the end of a Gauss-Seidel iteration, we
first compute NO, from the BDF formula (2). using
the production-loss form. We thus get

NO, = (Y + 97P)(1.0 + ytL), (17

where P and L are evaluated at the solution generated
by the last Gauss-Seidel iteration and Y denotes the
history term (3) of the BDF formula for NO,. Next, if
NO, > NO, then NQ, is recomputed from NO,,
otherwise NO is recomputed. In the same way O, is
computed and O; or NO; is recalculated from O,.
Consequently, relation (15) now holds after any
Gauss-Seidel iteration. In Appendix C of the preprint
Verwer et al. (1995), it is shown that lumping can be
interpreted as a simple form of preconditioning.

For VODE! and VODE2 we use the same ordering
of components as TWOSTEP in the Gauss-Seidel

SDA vaiues

i

0.25 0.5

1
CPU time (sec.}

2 3 4

Fig. 1. Results for Problem I. TWOSTEPI (=, solid), TWOSTEP2 {, dashed), VODE1 (x, dotted), VODE2
(x, solid), VODE3 (x, dashed).
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process. This ordering results in a large amount of
fill-in elements in the LU-decomposition of the matrix
P = —vytd. J denoting the Jacobian. Whereas the
original matrix P has §7 nonzero elements, the sum of
the nonzero eclements in L and U s 148 For the
present chemical system 1t 1s possible to reorder the
components 1n such a way that no fillin elements
arise at all, i.e. the total number of nonzero clements
in Loand U is equal to 57, which number should be
compared with 225 for the standard LU-decomposi-
tion. For completeness we give the new order of the
components: first the VOUs, followed by SO,. SO,.
NO, NO;., NO,, Oy and OH. This new ordening 18
used by VODE3,

Figure 1 shows all accuracy-efficiency plots for
Problem I. The marks on the plots correspond with
the five tolerances (11). Interestingly, lumping im-
proves the TWOSTEP solution more than expected
and in fact brings it very close to the true impheit
BDF solution. This is shown in Fig. 2 where agaun the
plots for TWOSTEP! and TWOSTEP2 are given,
together with the plot for the implicit solution. For
the three different cases the same step sizes were used
We see that the plots for TWOSTEP2 and the implicit
solution practically coincide, showing that the lump-
ing indeed has improved the convergence of the
Gauss-Seidel iteration as used in TWOSTEP!, Recall
that only two iterations have been carried out. Hence
for this chemistry the lumping works out very well
and because the additional costs are neglgible, it is
attractive to use. We should note, however, that lump-
ing is problem dependent and in general improves
accuracy certainly not as much as here,

The fact that there 1s hardly any difference in the
TWOSTEP1 2 accuracies for the larger tolerances,
which also occurs for VODE2 and VODE3, is due to
the upper step size bound of %00 s. Yet, for TWO-
STEP the CPU time becomes significantly larger
when the tolerance is decreased. This 1s caused by
coefficient updates at the beginning of every 2-h inter-
val. which introduces small, but fast imtial transients
These inttial transients have disappeared near the end
of the 2-h intervals and have no nfluence on the
accuracies there, but their presence obviously reduces
the step size m the initial phase of the integrations
This behavior 1s charactenstic for operator sphtting
appheations, indicating that for TWOSTEP the
choice of a minimal step size 1s of practical import-
ance

As expected. VODE2 outperforms VODEL We
found that this 15 due to the step size restriction {11}
and not a result of using the exact sparse Jacobian
instead of a full numencal approximation For the
present model, with only 15 components, the over-
head of this numerical approximation 1s too small to
become visible in the results. Restriction {7) prevents
VODE2 from taking very large step sizes which will
reduce the accuracy at the end of the 2-h intervals, but
also prevents VODE2 from tuking very small step
sizes lower than 1 s in the initial phase. As noted
before, these small step sizes are of no relevance for
the accuracies we measure. VODE2 spends only
about 30% in routines that handle the factorization
and the backsolve, which of course 1s too small to get
much gain in CPU time by replacing VODE2 by
VODE3. The latter needs approximately 20% less
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CPU time than VODE2. These numbers reveal that
by using the sparse matrix routines, the linear algebra
costs have been reduced by a factor three. Finally,
when we compare with the most efficient VODE
version, which is VODE3, we can conclude that
TWOSTEP2 outperforms VODE3 convincingly.
Also TWOSTEPI is faster in the 1% error range,
although the step size selection needs some more
attention for this test example.

3.3. Example Problem II: the methane CIRK
chemistry

We obtained our second chemical model from The
(1994). This model is used in long term, global studies
and describes a methane oxidation cycle. It consists of
46 reactions between 19 species. Thirteen reactions
depend on the solar zenith angle which, different from
Problem I, is taken continuous and hence calculated
in each time step. The problem is very stiff. Eigen-
values of the Jacobian lie between — 10° and 057!,
approximately. There are two extremely large eigeh-
values which originate from the free radicals O'D and
O3P. These are absent in Problem I, which explains
the modest stiffness of that problem. A complete de-
scription of the model defining the ODE system used
in the experiments can be found in Appendix B of the
preprint by Verwer et al. (1995).

The order of the components used in the Gauss—
Seidel process is (equal for TWOSTEP1/2): O'D,
03P, OH, NO3;, HO,, N,05, NO, NO,, O3, HNO;,
HO;NO,, HNO,, H,0, HCHO, CH;OO0H,
CH;0,, CH,, NO,, O,. TWOSTEP?2 uses the same
NO, and O, lumping as for Problem I. VODE! and
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VODE?2 use a slightly different order with O, omitted.
For the modified Newton process as used by
VODE]1/2 the order is to a great extent irrelevant,
while also the lumped species play no role here. The
sequence used by VODEI1/2 results in 31 fill-in ele-
ments in the LU-decomposition. Reordering leads to
a fill-in of 12 elements. Thus the total number of
nonzeroes after reordering is 111 + 12 =123. The
new sequence used by VODES3 reads CH,, O'D,
HNO,, H,0,, N,05, HNO;, HO,NO,, CH;00H,
0;, HCHO, CH;0,, NO;, O%P, NO, NO,, HO,,
NO,, OH.

Figure 3 shows all results obtained for Problem II.
First we notice that, similar as for Problem I, the
simple lumping trick improves the TWOSTEP accu-
racy considerably and for minor costs. The VODE
results compare well with those for Problem 1. Sup-
plying VODE with an analytical Jacobian and a min-
imal and maximal step size improves the performance
significantly (VODE2). However, here also the gain in
CPU from using the sparsity of the Jacobian in the
Jacobian evaluation is low, only 10%. Similar as for
Problem I, this also holds for the change to VODE3
where the sparsity is exploited in the solution of the
linear systems. In the accuracy region of greatest prac-
tical interest, both solvers perform well although
TWOSTEP is again the most efficient one.

3.4. Example Problem I1I: the EMEP chemistry

The third example problem is identical to the urban
test case reported in Verwer and Simpson (1994) for
the EMEP MSC-W ozone chemistry model. This
chemistry model consists of about 140 reactions
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Fig. 3. Results for Problem 1I. TWOSTEP1 (x, solid), TWOSTEP2 (*, dashed), VODEI! (x, dotted),
VODE?2 (x, solid), VODES3 (x, dashed).
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between 66 species. The model is state of the art in the
field of regional air pollution modeling. Rate coeffi-
cients are often variable, depending on temperature
and, for some, humidity. The model takes into ac-
count emission inputs and dry and wet removal pro-
cesses. Photolysis rates obviously depend on solar
elevation and cloudiness. These rates vary continu-
ously in time, but undergo a discontinuity at sunset
and sunrise. As regards to stiffness, Problem III is
comparable with Problem II. Because the model is
too large to describe here, we refer to Simpson et al.
(1993) and Simpson (1994) for more details.

Figure 4 shows all accuracy—efficiency plots we
obtained for Problem III. TWOSTEP2 now differs
from the version used before. For TWOSTEP2 also
two GS-iterations were used, but within each such
iteration five group iterations on the NO, + O;
group are added (cf. Verwer and Simpson, 1994). The
species in this group are strongly coupled, so it makes
sense to perform this group iteration. We emphasize
that this group iteration involves a minor change in
the code and hence is very simply applicable. Because
the group consists of only seven species, the additional
work is minor and it obviously improves the Gauss—
Seidel iteration. The TWOSTEP2 result should be
compared with the best result obtained for VODE,
which clearly is the VODES3 case. We see that for the
accuracy range of greatest practical interest, TWO-
STEP2 and VODES3 are comparable. For higher ac-
curacies the variable order VODE3 is more efficient
because it then uses the higher-order BDF formulas.
The figure also nicely illustrates that by an intelligent
use, standard stiff ODE codes like VODE can be
improved dramatically. In the low accuracy range,
VODE3 is about six times more efficient than
VODEI. We emphasize that the difference between
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VODE2 and VODE3 is only due to the use of the
sparse matrix techniques, which works out very well
for this test problem due to its large number of
components. The difference between VODE! and
VODE?2 is due to using the analytical sparse Jacobian
and the step size constraints (7). Both reduce part of

the CPU time needed by the black box version
VODE].

4. CONCLUDING REMARKS

The MAPLE tools for automatically computing the
analytical Jacobian and for deriving the datastructure
for the ILU routines are easy to use. The sparse
matrix technique based on the ILU routines from the
SLAP library handles the solution of the linear
systems well. We have encountered no difficulties
in using VODE3, which solves the linear systems
without pivoting. Similar experiences were reported
by Jacobson and Turco (1994) and Sherman and
Hindmarsh (1980).

For large problems from atmospheric chemistry,
like the EMEP MSC-W model, the sparse matrix
technique can lead to significant savings in CPU time
for codes like VODE. This experience corresponds
with the results reported by Jacobson and Turco
(1994). For atmospheric chemistry models of a more
moderate size, like the EUSMOG and CIRK model,
the gain by exploiting sparsity does hardly pay. For
such models, with about 20 species say, the solution
costs of the linear systems in VODE are simply too
low compared to the costs of all other calculations.

There is room for both TWOSTEP and VODE.
When used in an intelligent way, both solve our test
examples efficiently. In the low accuracy region
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TWOSTEP always seems to be somewhat faster. Ob-
viously, the lumping technique and/or the group iter-
ation are recommendable for TWOSTEP when only
a few Gauss-Seidel iterations are used. Lumping,
however, is problem dependent which means that
each time a few reactions are added, it might turn out
necessary to reconsider the components treated in the
lumping process to retain its efficiency. This, of
course, is a disadvantage.

An advantage of Gauss-Seidel iteration is that it
works matrix free and hence the memory demand is
low, which is of interest when grid vectorization is
employed. As shown in Verwer et al. (1995), Gauss-
Seidel iteration can be nearly optimally vectorized
over the grid, in a similar way as modified Newton
combined with sparse solution techniques in the code
SMVGEAR (Jacobson and Turco, 1994).

A further attractive feature of Gauss-Seidel iter-
atiorr is that it can be efficiently extended to solve
chemistry and vertical turbulent diffusion in a coupled
way (Verwer ef al., 1995). This is not true for the
modified Newton process as regards the exploitation of
sparsity. If diffusion is coupled with chemistry, then the
sparsity of the chemistry Jacobian is almost completely
lost in the factorization of the banded linear system.
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ERRATUM

“A comparison of stiff ODE solvers for atmospheric chemistry problems™ by J. G. Verwer, J. G. Blom,
M. Van Loon and E. J. Spee (Atmospheric Environment 30, 49-58).
On page 54, equation (15) should read as follows:
NO” = NOJ + NO”, 0! =NOj+ Of
On page 53, in reactions 3 and 4, and also on page 55, line 13, N03..' should read:
NO:
There is an error in Figure 3 on page 56. The authors regret that the SDA was not computed according to

formula (10) on page 53. A recalculation gives the figure shown below. The SDA differ between 0.6 and 1.0
from the previous values, but the conclusions remain unchanged.

(4]
T

SDA values
=

0.25 0.5 1 2 3 45 10
CPU times

Fig. 3. Results for Problem II. TWOSTEPI (*, solid), TWOSTEP2 (*, dashed), VODEI! (x, dotted),
VODE2 (%, solid), VODE3 ( x, dashed).
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“A comparison of stiff ODE solvers for atmospheric chemistry problems” by J. G. Verwer, J. G. Blom,
M. Van Loon and E. J. Spee (Atmospheric Environment 30, 49-58).
On page 54, equation (15) should read as follows:
NO” = NO; + NO", 0" =NO7+ Of
On page 53, in reactions 3 and 4, and also on page 55, line 13, N03; should read:
NO?

There is an error in Figure 3 on page 56. The authors regret that the SDA was not computed according to
formula (10) on page 53. A recalculation gives the figure shown below. The SDA differ between 0.6 and 1.0
from the previous values, but the conclusions remain unchanged.
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Fig. 3. Results for Problem II. TWOSTEPI (*,solid), TWOSTEP2 (*, dashed), VODEL (x, dotted),
VODE?2 (%, solid), VODE3 (x , dashed).
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